Enumerating branched orientable surface coverings over a non-orientable surface

نویسندگان

  • Ian P. Goulden
  • Jin Ho Kwak
  • Jaeun Lee
چکیده

The isomorphism classes of several types of graph coverings of a graph have been enumerated by many authors [M. Hofmeister, Graph covering projections arising from finite vector space over finite fields, Discrete Math. 143 (1995) 87–97; S. Hong, J.H. Kwak, J. Lee, Regular graph coverings whose covering transformation groups have the isomorphism extention property, Discrete Math. 148 (1996) 85–105; J.H. Kwak, J.H. Chun, J.Lee, Enumeration of regular graph coverings having finite abelian covering transformation groups, SIAM J. Discrete Math. 11 (1998) 273–285; J.H. Kwak, J. Lee, Isomorphism classes of graph bundles, Canad. J. Math. XLII (1990) 747–761; J.H. Kwak, J. Lee, Enumeration of connected graph coverings, J. Graph Theory 23 (1996) 105–109]. Recently, Kwak et al [Balanced regular coverings of a signed graph and regular branched orientable surface coverings over a non-orientable surface, Discrete Math. 275 (2004) 177–193] enumerated the isomorphism classes of balanced regular coverings of a signed graph, as a continuation of an enumeration work done by Archdeacon et al [Bipartite covering graphs, Discrete Math. 214 (2000) 51–63] the isomorphism classes of branched orientable regular surface coverings of a non-orientable surface having a finite abelian covering transformation group. In this paper, we enumerate the isomorphism classes of connected balanced (regular or irregular) coverings of a signed graph and those of unbranched orientable coverings of a non-orientable surface, as an answer of the question raised by Liskovets [Reductive enumeration under mutually orthogonal group actions, Acta-Appl. E-mail address: [email protected] (J.H. Kwak). 1 Supported by Com2MaC-KOSEF (R11-1999-054). 2 Supported by KRF(2000-015-DP0037). 0012-365X/$ see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2003.10.030 I.P. Goulden et al. / Discrete Mathematics 303 (2005) 42–55 43 Math. 52 (1998) 91–120]. As a consequence of these two results, we also enumerate the isomorphism classes of branched orientable surface coverings of a non-orientable surface. © 2005 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enumeration of orientable coverings of a non-orientable manifold

In this paper we solve the known V.A. Liskovets problem (1996) on the enumeration of orientable coverings over a non-orientable manifold with an arbitrary finitely generated fundamental group. As an application we obtain general formulas for the number of chiral and reflexible coverings over the manifold. As a further application, we count the chiral and reflexible maps and hypermaps on a close...

متن کامل

Counting non-equivalent coverings and non-isomorphic maps for Riemann surfaces

The main result of the paper is a new formula for the number of conjugacy classes of subgroups of a given index in a finitely generated group. As application of this result a simple proof of the formula for the number of non-equivalent coverings over surface (orientable or not, bordered or not) is given. Another application is a formula for the number of non-isomorphic unrooted maps on an orien...

متن کامل

Complex Matrix Models and Statistics of Branched Coverings of 2D Surfaces

We present a complex matrix gauge model defined on an arbitrary two-dimensional orientable lattice. We rewrite the model’s partition function in terms of a sum over representations of the group U(N). The model solves the general combinatorial problem of counting branched covers of orientable Riemann surfaces with any given, fixed branch point structure. We then define an appropriate continuum l...

متن کامل

Open 3-manifolds and branched coverings: a quick exposition 3-variedades abiertas y cubiertas ramificadas

Branched coverings relate closed, orientable 3-manifolds to links in S, and open, orientable 3-manifolds to strings in S r T , where T is a compact, totally disconnected tamely embedded subset of S. Here we give the foundations of this last relationship. We introduce Fox theory of branched coverings and state the main theorems. We give examples to illustrate the theorems.

متن کامل

A Universal Ribbon Surface in B

We construct an orientable ribbon surface F ⊂ B, which is universal in the following sense: any orientable 4-manifold M ∼= B ∪ 1-handles ∪ 2-handles can be represented as a cover of B branched over F .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 303  شماره 

صفحات  -

تاریخ انتشار 2005